A importância dos modelos murinos na caracterização das respostas imunológicas às leishmanioses: uma revisão

Caio Cotta Natale, Paula Melo Seixas, Daniel Manzoni de Almeida

Resumo


As leishmanioses são doenças causadas por parasitos do gênero Leishmania sp. O grande número dos estudos na construção do conhecimento sobre as formas clínicas das leishmanioses, principalmente na área da Imunologia, contribui para a compreensão dos processos imunológicos envolvidos na reposta às infecções por Leishmania. Propostas de vacinas e tratamentos farmacológicos para essas doenças são, também, realizados em modelos de camundongos (murinos). Aqui, nosso objetivo foi realizar uma revisão ampliada e esquemática sobre os resultados obtidos nos últimos anos sobre as respostas imunes desenvolvidas nos modelos murinos para a leishmaniose. Acreditamos que essa sistematização é importante no direcionamento de estudos e construção de conhecimentos futuros sobre a leishmaniose.


Palavras-chave


Leishmaniose; Leishmania amazonensis, Leishmania major, Leishmania braziliensis, Leishmania donovani/infantum

Texto completo:

PDF

Referências


(1) Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 2012;7(5):e35671.

(2) Salam N, Al-Shaqha WM, Azzi A. Leishmaniasis in the Middle East: Incidence and Epidemiology. PLoS Negl Trop Dis 2014 Oct;8(10):e3208.

(3) WHO Expert Committee on the Control of the Leishmaniases, World Health Organization. Control of the leishmaniases report of a meeting of the WHO Expert Commitee on the Control of Leishmaniases, Geneva, 22-26 March 2010. Geneva: World Health Organization; 2010.

(4) Hotez PJ, American Society for Microbiology. Forgotten people, forgotten diseases the neglected tropical diseases and their impact on global health and development. 2nd ed ed. Washington, DC: ASM Press; 2013.

(5) Desjeux P. Leishmaniasis. Public health aspects and control. Clin Dermatol 1996 Sep;14(5):417-23.

(6) Rogers ME, Ilg T, Nikolaev AV, Ferguson MA, Bates PA. Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature 2004 Jul 22;430(6998):463-7.

(7) Silveira FT, Lainson R, Corbett CE. Clinical and immunopathological spectrum of American cutaneous leishmaniasis with special reference to the disease in Amazonian Brazil: a review. Mem Inst Oswaldo Cruz 2004 May;99(3):239-51.

(8) Bajenoff M, Breart B, Huang AY, Qi H, Cazareth J, Braud VM, et al. Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J Exp Med 2006 Mar 20;203(3):619-31.

(9) Bates PA. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol 2007 Aug;37(10):1097-106.

(10) Rogers ME, Bates PA. Leishmania manipulation of sand fly feeding behavior results in enhanced transmission. PLoS Pathog 2007 Jun;3(6):e91.

(11) Schaible UE, Schlesinger PH, Steinberg TH, Mangel WF, Kobayashi T, Russell DG. Parasitophorous vacuoles of Leishmania mexicana acquire macromolecules from the host cell cytosol via two independent routes. J Cell Sci 1999 Mar;112 ( Pt 5):681-93.

(12) Campbell SM, Rainey PM. Leishmania pifanoi: kinetics of messenger RNA expression during amastigote to promastigote transformation in vitro. Exp Parasitol 1993 Aug;77(1):1-12.

(13) Sacks DL, Perkins PV. Identification of an infective stage of Leishmania promastigotes. Science 1984 Mar 30;223(4643):1417-9.

(14) Pimenta PF, Turco SJ, McConville MJ, Lawyer PG, Perkins PV, Sacks DL. Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science 1992 Jun 26;256(5065):1812-5.

(15) Lo SK, Bovis L, Matura R, Zhu B, He S, Lum H, et al. Leishmania lipophosphoglycan reduces monocyte transendothelial migration: modulation of cell adhesion molecules, intercellular junctional proteins, and chemoattractants. J Immunol 1998 Feb 15;160(4):1857-65.

(16) Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet 2005 Oct 29;366(9496):1561-77.

(17) Sacks DL. Metacyclogenesis in Leishmania promastigotes. Exp Parasitol 1989 Jul;69(1):100-3.

(18) Mosser DM, Brittingham A. Leishmania, macrophages and complement: a tale of subversion and exploitation. Parasitology 1997;115 Suppl:S9-23.

(19) Dominguez M, Moreno I, Aizpurua C, Torano A. Early mechanisms of Leishmania infection in human blood. Microbes Infect 2003 May;5(6):507-13.

(20) Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, Rowton E, et al. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med 1998 Nov 16;188(10):1941-53.

(21) Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, Sacks D. A natural model of Leishmania major infection reveals a prolonged "silent" phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol 2000 Jul 15;165(2):969-77.

(22) Warburg A, Schlein Y. The effect of post-bloodmeal nutrition of Phlebotomus papatasi on the transmission of Leishmania major. Am J Trop Med Hyg 1986 Sep;35(5):926-30.

(23) Nabors GS, Nolan T, Croop W, Li J, Farrell JP. The influence of the site of parasite inoculation on the development of Th1 and Th2 type immune responses in (BALB/c x C57BL/6) F1 mice infected with Leishmania major. Parasite Immunol 1995 Nov;17(11):569-79.

(24) Locksley RM, Heinzel FP, Sadick MD, Holaday BJ, Gardner KD, Jr. Murine cutaneous leishmaniasis: susceptibility correlates with differential expansion of helper T-cell subsets. Ann Inst Pasteur Immunol 1987 Sep;138(5):744-9.

(25) Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. 1986. J Immunol 2005 Jul 1;175(1):5-14.

(26) Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med 1989 Jan 1;169(1):59-72.

(27) Watanabe H, Numata K, Ito T, Takagi K, Matsukawa A. Innate immune response in Th1- and Th2-dominant mouse strains. Shock 2004 Nov;22(5):460-6.

(28) Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008 Dec;8(12):958-69.

(29) Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther 2008 Feb;117(2):244-79.

(30) Kreider T, Anthony RM, Urban JF, Jr., Gause WC. Alternatively activated macrophages in helminth infections. Curr Opin Immunol 2007 Aug;19(4):448-53.

(31) Loke P, Gallagher I, Nair MG, Zang X, Brombacher F, Mohrs M, et al. Alternative activation is an innate response to injury that requires CD4+ T cells to be sustained during chronic infection. J Immunol 2007 Sep 15;179(6):3926-36.

(32) Jones DE, Buxbaum LU, Scott P. IL-4-independent inhibition of IL-12 responsiveness during Leishmania amazonensis infection. J Immunol 2000 Jul 1;165(1):364-72.

(33) Kane MM, Mosser DM. The role of IL-10 in promoting disease progression in leishmaniasis. J Immunol 2001 Jan 15;166(2):1141-7.

(34) Noben-Trauth N, Lira R, Nagase H, Paul WE, Sacks DL. The relative contribution of IL-4 receptor signaling and IL-10 to susceptibility to Leishmania major. J Immunol 2003 May 15;170(10):5152-8.

(35) McMahon-Pratt D, Alexander J. Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol Rev 2004 Oct;201:206-24.

(36) Ji J, Sun J, Soong L. Impaired expression of inflammatory cytokines and chemokines at early stages of infection with Leishmania amazonensis. Infect Immun 2003 Aug;71(8):4278-88.

(37) Qi H, Popov V, Soong L. Leishmania amazonensis-dendritic cell interactions in vitro and the priming of parasite-specific CD4(+) T cells in vivo. J Immunol 2001 Oct 15;167(8):4534-42.

(38) Soong L, Chang CH, Sun J, Longley BJ, Jr., Ruddle NH, Flavell RA, et al. Role of CD4+ T cells in pathogenesis associated with Leishmania amazonensis infection. J Immunol 1997 Jun 1;158(11):5374-83.

(39) Afonso LC, Scott P. Immune responses associated with susceptibility of C57BL/10 mice to Leishmania amazonensis. Infect Immun 1993 Jul;61(7):2952-9.

(40) Wilson J, Huynh C, Kennedy KA, Ward DM, Kaplan J, Aderem A, et al. Control of parasitophorous vacuole expansion by LYST/Beige restricts the intracellular growth of Leishmania amazonensis. PLoS Pathog 2008 Oct;4(10):e1000179.

(41) Hermida MD, Doria PG, Taguchi AM, Mengel JO, dos-Santos W. Leishmania amazonensis infection impairs dendritic cell migration from the inflammatory site to the draining lymph node. BMC Infect Dis 2014;14:450.

(42) Carvalho AK, Carvalho K, Passero LF, Sousa MG, da Matta VL, Gomes CM, et al. Differential Recruitment of Dendritic Cells Subsets to Lymph Nodes Correlates with a Protective or Permissive T-Cell Response during Leishmania (Viannia) Braziliensis or Leishmania (Leishmania) Amazonensis Infection. Mediators Inflamm 2016;2016:7068287.

(43) Heinzel FP, Schoenhaut DS, Rerko RM, Rosser LE, Gately MK. Recombinant interleukin 12 cures mice infected with Leishmania major. J Exp Med 1993 May 1;177(5):1505-9.

(44) Jones DE, Buxbaum LU, Scott P. IL-4-independent inhibition of IL-12 responsiveness during Leishmania amazonensis infection. J Immunol 2000 Jul 1;165(1):364-72.

(45) Sousa LM, Carneiro MB, Resende ME, Martins LS, dos Santos LM, Vaz LG, et al. Neutrophils have a protective role during early stages of Leishmania amazonensis infection in BALB/c mice. Parasite Immunol 2014 Jan;36(1):13-31.

(46) Guimaraes-Costa AB, Nascimento MT, Froment GS, Soares RP, Morgado FN, Conceicao-Silva F, et al. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci U S A 2009 Apr 21;106(16):6748-53.

(47) Guimaraes-Costa AB, DeSouza-Vieira TS, Paletta-Silva R, Freitas-Mesquita AL, Meyer-Fernandes JR, Saraiva EM. 3'-nucleotidase/nuclease activity allows Leishmania parasites to escape killing by neutrophil extracellular traps. Infect Immun 2014 Apr;82(4):1732-40.

(48) Carlsen ED, Hay C, Henard CA, Popov V, Garg NJ, Soong L. Leishmania amazonensis amastigotes trigger neutrophil activation but resist neutrophil microbicidal mechanisms. Infect Immun 2013 Nov;81(11):3966-74.

(49) Qi H, Ji J, Wanasen N, Soong L. Enhanced replication of Leishmania amazonensis amastigotes in gamma interferon-stimulated murine macrophages: implications for the pathogenesis of cutaneous leishmaniasis. Infect Immun 2004 Feb;72(2):988-95.

(50) Geraldo MM, Costa CR, Barbosa FM, Vivanco BC, Gonzaga WF, Novaes E Brito RR, et al. In vivo and in vitro phagocytosis of Leishmania (Leishmania) amazonensis promastigotes by B-1 cells. Parasite Immunol 2016 Apr 16.

(51) Ji J, Masterson J, Sun J, Soong L. CD4+CD25+ regulatory T cells restrain pathogenic responses during Leishmania amazonensis infection. J Immunol 2005 Jun 1;174(11):7147-53.

(52) Amato VS, de Andrade HF, Duarte MI. Mucosal leishmaniasis: in situ characterization of the host inflammatory response, before and after treatment. Acta Trop 2003 Jan;85(1):39-49.

(53) Da-Cruz AM, de Oliveira MP, De Luca PM, Mendonca SC, Coutinho SG. Tumor necrosis factor-alpha in human american tegumentary leishmaniasis. Mem Inst Oswaldo Cruz 1996 Mar;91(2):225-9.

(54) Gul HC, Tosun F, Karakas A, Koru O, Onguru O, Mert G, et al. A case of mucosal leishmaniasis: Mimicking intranasal tumor with perforation of septum. J Microbiol Immunol Infect 2013 Dec 30.

(55) Boaventura VS, Santos CS, Cardoso CR, de AJ, Dos Santos WL, Clarencio J, et al. Human mucosal leishmaniasis: neutrophils infiltrate areas of tissue damage that express high levels of Th17-related cytokines. Eur J Immunol 2010 Oct;40(10):2830-6.

(56) de Camargo RA, Nicodemo AC, Sumi DV, Gebrim EM, Tuon FF, de Camargo LM, et al. Facial structure alterations and abnormalities of the paranasal sinuses on multidetector computed tomography scans of patients with treated mucosal leishmaniasis. PLoS Negl Trop Dis 2014 Jul;8(7):e3001.

(57) Gomes CM, Avila LR, Pinto SA, Duarte FB, Pereira LI, Abrahamsohn IA, et al. Leishmania braziliensis amastigotes stimulate production of IL-1beta, IL-6, IL-10 and TGF-beta by peripheral blood mononuclear cells from nonendemic area healthy residents. Parasite Immunol 2014 May;36(5):225-31.

(58) Gaze ST, Dutra WO, Lessa M, Lessa H, Guimaraes LH, Jesus AR, et al. Mucosal leishmaniasis patients display an activated inflammatory T-cell phenotype associated with a nonbalanced monocyte population. Scand J Immunol 2006 Jan;63(1):70-8.

(59) Dantas ML, de Oliveira JM, Carvalho L, Passos ST, Queiroz A, Guimaraes LH, et al. Comparative analysis of the tissue inflammatory response in human cutaneous and disseminated leishmaniasis. Mem Inst Oswaldo Cruz 2014 Apr;109(2):202-9.

(60) Carvalho AK, Carvalho K, Passero LF, Sousa MG, da Matta VL, Gomes CM, et al. Differential Recruitment of Dendritic Cells Subsets to Lymph Nodes Correlates with a Protective or Permissive T-Cell Response during Leishmania (Viannia) Braziliensis or Leishmania (Leishmania) Amazonensis Infection. Mediators Inflamm 2016;2016:7068287.

(61) Ruiz JH, Becker I. CD8 cytotoxic T cells in cutaneous leishmaniasis. Parasite Immunol 2007 Dec;29(12):671-8.

(62) Novais FO, Carvalho LP, Graff JW, Beiting DP, Ruthel G, Roos DS, et al. Cytotoxic T cells mediate pathology and metastasis in cutaneous leishmaniasis. PLoS Pathog 2013;9(7):e1003504.

(63) Santos CS, Boaventura V, Ribeiro CC, Tavares N, Lordelo MJ, Noronha A, et al. CD8(+) granzyme B(+)-mediated tissue injury vs. CD4(+)IFNgamma(+)-mediated parasite killing in human cutaneous leishmaniasis. J Invest Dermatol 2013 Jun;133(6):1533-40.

(64) Dantas ML, Oliveira JC, Carvalho L, Passos ST, Queiroz A, Machado P, et al. CD8+ T cells in situ in different clinical forms of human cutaneous leishmaniasis. Rev Soc Bras Med Trop 2013 Nov;46(6):728-34.

(65) Guerreiro JB, Cruz AA, Barral A, Lessa HA, Rocha H, Carvalho EM. Mucosal leishmaniasis: quantitative nasal cytology as a marker of disease activity and indicator of healing. Ann Otol Rhinol Laryngol 2000 Jan;109(1):89-94.

(66) Ives A, Ronet C, Prevel F, Ruzzante G, Fuertes-Marraco S, Schutz F, et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science 2011 Feb 11;331(6018):775-8.

(67) Childs GE, Lightner LK, McKinney L, Groves MG, Price EE, Hendricks LD. Inbred mice as model hosts for cutaneous leishmaniasis. I. Resistance and susceptibility to infection with Leishmania braziliensis, L. mexicana, and L. aethiopica. Ann Trop Med Parasitol 1984 Feb;78(1):25-34.

(68) DeKrey GK, Lima HC, Titus RG. Analysis of the immune responses of mice to infection with Leishmania braziliensis. Infect Immun 1998 Feb;66(2):827-9.

(69) Barral A, Petersen EA, Sacks DL, Neva FA. Late metastatic Leishmaniasis in the mouse. A model for mucocutaneous disease. Am J Trop Med Hyg 1983 Mar;32(2):277-85.

(70) Oliveira CF, Manzoni-de-Almeida D, Mello PS, Natale CC, Santiago HC, Miranda LS, et al. Characterization of chronic cutaneous lesions from TNF-receptor-1-deficient mice infected by Leishmania major. Clin Dev Immunol 2012;2012:865708.

(71) Vieira LQ, Goldschmidt M, Nashleanas M, Pfeffer K, Mak T, Scott P. Mice lacking the TNF receptor p55 fail to resolve lesions caused by infection with Leishmania major, but control parasite replication. J Immunol 1996 Jul 15;157(2):827-35.

(72) Pearson RD, Steigbigel RT. Phagocytosis and killing of the protozoan Leishmania donovani by human polymorphonuclear leukocytes. J Immunol 1981 Oct;127(4):1438-43.

(73) Murray HW, Rubin BY, Rothermel CD. Killing of intracellular Leishmania donovani by lymphokine-stimulated human mononuclear phagocytes. Evidence that interferon-gamma is the activating lymphokine. J Clin Invest 1983 Oct;72(4):1506-10.

(74) Carvalho EM, Badaro R, Reed SG, Jones TC, Johnson WD, Jr. Absence of gamma interferon and interleukin 2 production during active visceral leishmaniasis. J Clin Invest 1985 Dec;76(6):2066-9.

(75) Sacks DL, Perkins PV. Development of infective stage Leishmania promastigotes within phlebotomine sand flies. Am J Trop Med Hyg 1985 May;34(3):456-9.

(76) Babaloo Z, Kaye PM, Eslami MB. Interleukin-13 in Iranian patients with visceral leishmaniasis: relationship to other Th2 and Th1 cytokines. Trans R Soc Trop Med Hyg 2001 Jan;95(1):85-8.

(77) Thakur CP, Mitra DK, Narayan S. Skewing of cytokine profiles towards T helper cell type 2 response in visceral leishmaniasis patients unresponsive to sodium antimony gluconate. Trans R Soc Trop Med Hyg 2003 Jul;97(4):409-12.

(78) Nascimento MS, Carregaro V, Lima-Junior DS, Costa DL, Ryffel B, Duthie M, et al. IL-17A ACTS SYNERGISTICALLY WITH IFN-gamma TO PROMOTE PROTECTION AGAINST Leishmania infantum INFECTION. J Infect Dis 2014 Oct 1.

(79) Pitta MG, Romano A, Cabantous S, Henri S, Hammad A, Kouriba B, et al. IL-17 and IL-22 are associated with protection against human kala azar caused by Leishmania donovani. J Clin Invest 2009 Aug;119(8):2379-87.

(80) Anderson CF, Oukka M, Kuchroo VJ, Sacks D. CD4(+)CD25(-)Foxp3(-) Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J Exp Med 2007 Feb 19;204(2):285-97.

(81) Melby PC, Tabares A, Restrepo BI, Cardona AE, McGuff HS, Teale JM. Leishmania donovani: evolution and architecture of the splenic cellular immune response related to control of infection. Exp Parasitol 2001 Sep;99(1):17-25.

(82) Oliveira CF, Manzoni-de-Almeida D, Mello PS, Natale CC, Santiago HC, Miranda LS, et al. Characterization of chronic cutaneous lesions from TNF-receptor-1-deficient mice infected by Leishmania major. Clin Dev Immunol 2012;2012:865708.

(83) Carneiro MB, Lopes ME, Vaz LG, Sousa LM, dos Santos LM, de Souza CC, et al. IFN-gamma-Dependent Recruitment of CD4(+) T Cells and Macrophages Contributes to Pathogenesis During Leishmania amazonensis Infection. J Interferon Cytokine Res 2015 Dec;35(12):935-47.

(84) Sousa LM, Carneiro MB, dos Santos LM, Natale CC, Resende ME, Mosser DM, et al. IL-18 contributes to susceptibility to Leishmania amazonensis infection by macrophage-independent mechanisms. Cytokine 2015 Aug;74(2):327-30.


Apontamentos

  • Não há apontamentos.


Direitos autorais 2016 Caio Cotta Natale, Paula Melo Seixas, Daniel Manzoni de Almeida

Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.

 

 

Indexadores: Sumários.org | Diadorim | REDIB | LATINDEX