Carolina Vieira Cardoso, Eduardo Fernandes Bondan


Embora tenha havido nas últimas décadas um progresso marcante nas taxas de sobrevida de crianças com câncer, é reconhecido que a quimioterapia administrada durante o período da infância e da adolescência pode exercer significativa toxicidade sobre o sistema nervoso central (SNC). Pode, por exemplo, afetar as funções neurocognitivas dos sobreviventes, inclusive com prejuízo no rendimento escolar/acadêmico ainda quando crianças e/ou tardiamente, em idade adulta, dessa forma influenciando de maneira expressiva a qualidade de vida futura desses indivíduos. Modelos animais e estudos clínicos têm permitido a busca da compreensão dos mecanismos patogênicos que envolvem os déficits cognitivos induzidos pela quimioterapia em crianças e adolescentes, contribuindo ainda para o desenvolvimento de drogas que visem a prevenir ou minimizar os efeitos colaterais no SNC desses pacientes. Na presente revisão, busca-se apresentar estudos que descrevem a disfunção cognitiva tardia induzida pela quimioterapia aplicada no período da infância e da adolescência, discutindo os possíveis mecanismos incriminados, suas repercussões na vida adulta e a importância dos estudos pré-clínicos in vivo na busca de protocolos terapêuticos que atenuem ou impeçam a ocorrência desse fenômeno.


adolescência; déficits cognitivos; quimioterapia; infância; neurotoxicidade.

Texto completo:



Aarsen FK, Paquier PF, Arts WF, Van Veelen ML, Michiels E, Lequin M, et al. Cognitive deficits and predictors 3 years after diagnosis of a pilocytic astrocytoma in childhood. J Clin Oncol. 2009;27:3526-3532.

Anderson SF, Kunin-Batson SA. Neurocognitive late effects of chemotherapy in children: The past 10 years of research on brain structure and function. Pediatr Blood Cancer. 2009;52:159-64.

Armenian S, Bhatia S. Predicting and Preventing Anthracycline-Related Cardiotoxicity. Am Soc Clin Oncol Educ Book. 2018;38:3-12.

Armstrong GT, Liu Q, Yasui Y, Huang S, Ness KK, Leisenring W, et al. Long-term outcomes among adult survivors of childhood central nervous system malignancies in the Childhood Cancer Survivor Study. J Natl Cancer Inst. 2009;101:946-958.

Armstrong GT, Sklar CA, Hudson MM, Robison LL. Long-term health status among survivors of childhood cancer: does sex matter? J Clin Oncol. 2007;25:4477-4489.

Barone SJR, Das KP, Lassiter TL, White LD. Vulnerable processes of nervous system development: a review of markers and methods. Neurotoxicol. 2000;21:15-36.

Barr RD, Simpson T, Whitton A, Rush B, Furlong W, Feeny DH. Health-related quality of life in survivors of tumours of the central nervous system in childhood--a preference-based approach to measurement in a cross-sectional study. Eur J Cancer. 1999;35:248-255.

Bisen-Hersh EB, Hineline PN, Walker EA. Disruption of learning processes by chemotherapeutic agents in childhood survivors of acute lymphoblastic leukemia and preclinical models. J Cancer. 2011;2:292-301.

Bittigau P, Sifringer M, Pohl D, Stadthaus D, Ishimaru M, Shimizu H, et al. Apoptotic neurodegeneration following trauma is markedly enhanced in the immature brain. Ann Neurol. 1999;45:724-735.

Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA. 1995;92:7162-7166.

Bossy-Wetzel E, Barsoum MJ, Godzik A, Schwarzenbacher R, Lipton SA. Mitochondrial function in apoptosis, neurodegeneration and aging. Curr Opin Cell Biol. 2003;15:706-716.

Butler RW, Mulhern RK. Neurocognitive interventions for children and adolescents surviving cancer. J Pediatr Psychol. 2005;30:65-78.

Castellino MS, Ullrich JN, Whelen JM, Lange JB. Developing interventions for cancer-related cognitive dysfunction in childhood cancer survivors. J Natl Cancer Inst. 2014;8:1-16.

Conklin HM, Khan RB, Reddick WE, Helton S, Brown R, Howard SC, et al. Acute neurocognitive response to methylphenidate among survivors of childhood cancer: a randomized, double-blind, cross-over trial. J Pediatr Psychol. 2007;32:1127-1139.

Conklin HM, Li C, Xiong X, Ogg RJ, Merchant, TE. Predicting change in academic abilities after conformal radiation therapy for localized ependymoma. J Clin Oncol. 2008;26:3965-3970.

Conklin HM, Helton S, Ashford J, Mulhern RK, Reddick WE, Brown R, et al. Predicting methylphenidate response in long-term survivors of childhood cancer: a randomized, double-blind, placebo-controlled, crossover trial. J Pediatr Psychol. 2010;35:144-155.

Dehorter N, Vinay L, Hammond C, Ben-Ari Y. Timing of developmental sequences in different brain structures: physiological and pathological implications. Eur J Neurosci. 2012;35:1846-1856.

Darnell D, Gilbert SF. Neuroembryology. Wiley Interdiscip Rev Dev Biol. 2017;6:1-13.

DeVita V, Hellman S, Rosenberg S. Cancer: Principles & Practice of Oncology. 7 ed. Philadelphia:Wolters Kluwer;2005.332-422p.

DeSesso JM. Comparative embryology. In: Handbook of Developmental Toxicology. Florida:CRC Press;1996.11-174p.

Dietrich J, Han R, Yang Y, Mayer-Pröschel M, Noble M. CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J Biol. 2006;5:22.1–22.

Duffner PK. Risk factors for cognitive decline in children treated for brain tumors. Eur J Pediatr Neurol. 2010;14:106-115.

Falck AJ, Mooney S, Kapoor SS, White KM, Bearer C, El Metwally D. Developmental exposure to environmental toxicants. Pediatr Clin North Am. 2015;62:1173-97.

Fardell JE, Vardy J, Johnston IN, Winocur G. Chemotherapy and cognitive impairment: treatment options. Nat Res. 2011;90:366-376.

Finlay BL, Darlington RB, Nicastro N. Developmental structure in brain evolution. Behav Brain Sci. 2001;24:263-278.

Flatters SJL, Dougherty PM, Colvin LA. Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): a narrative review. Br J Anaesth. 2017;119:737-749.

Frobisher C, Lancashire ER, Winter DL, Jenkinson HC, Hawkins MM. Long-term population-based marriage rates among adult survivors of childhood cancer in Britain. Int J Cancer. 2007;121:846-855.

Genschaft M, Huebner T, Plessow F, Ikonomidou VN, Abolmaali N, Krone F, et al. Impact of chemotherapy for childhood leukemia on brain morphology and function. PLOS One. 2013;8:e78599.

Henderson TO, Friedman DL, Meadows AT. Childhood cancer survivors: transition to adult-focused risk-based care. Pediatrics. 2010;126:129-136.

Holen I, Speirs V, Morrissey B, Blyth K. In vivo models in breast cancer research: progress, challenges and future directions. Dis Model Mech. 2017;10:359-371.

Ikonomidou C. Chemotherapy and the pediatric brain. Mol Cel Pediatr. 2018;5:1-10.

Janelsins MC, Roscoe JA, Berg MJ, Thompson BD, Gallagher MJ, Morrow GR, et al. IGF-1 partially restores chemotherapy-induced reductions in neural cell proliferation in adult C57BL/6 mice. Cancer Invest. 2010;28:544-553.

Janzen LA, Spiegler BJ. Neurodevelopmental sequelae of pediatric acute lymphoblastic leukemia and its treatment. Dev Disabil Res Rev. 2008;14:185-195.

John T, Lomeli N, Bota DA. Systemic cisplatin exposure during infancy and adolescence causes impaired cognitive function in adulthood. Behav Brain Res. 2016;319:200-206.

Krischer JP, Epstein S, Cuthbertson DD, Goorin AM, Epstein ML, Lipshultz SE. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. J Clin Oncol. 1997;15:1544-1552.

Landier W, Bhatia S, Eshelman AD, Forte JK, Sweeney T, Allison L, et al. Development of risk-based guidelines for pediatric cancer survivors: the children’s oncology group long-term follow-up guidelines from the children’s oncology group late effects committee and nursing discipline. J Clin Oncol. 2004;22:4979-4989.

Lawson A, Anderson H, Schoenwolf GC. Cellular mechanisms of neural fold formation and morphogenesis in the chick embryo. Anat Rec. 2001;262:153-168.

Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature. 1999;399:A7-A14.

Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994;330:613-622.

Lofstad EG, Reinfjell T, Hestad H, Diseth TH. Cognitive outcome in children and adolescents treated for acute lymphoblastic leukaemia with chemotherapy only. Acta Paediatr. 2009;98:180-186.

Luciana M, Conklin HM, Hooper CJ, Yarger RS. The development of nonverbal working memory and executive control processes in adolescents. Child Dev. 2005;76:697-712.

Mansoori B, Mohammadi , Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017;7:339-348.

McDonald BC, Conroy SK, Ahles TA, West JD, Saykin AJ. Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast Canc Res Treat. 2010;123:819-28.

Mitby PA, Robison LL, Whitton JA, Zevon MA, Gibbs IC, Tersak JM. Utilization of special education services and educational attainment among long-term survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Cancer; 2003;97:1115-1126.

Mullenix PJ, Kernan WJ, Schunior A, Howes A, Waber DP, Sallan SE, et al. Interactions of steroid, methotrexate, and radiation determine neurotoxicity in an animal model to study therapy for childhood leukemia. Pediatr Res. 1994;35:171-178.

Mulhern RK, Butler RW. Neurocognitive sequelae of childhood cancers and their treatment. J Pediatr Rehab Med. 2004;7:1-14.

Mulhern RK, Merchant TE, Gajjar A, Reddick WE, Kun LE. Late neurocognitive sequelae in survivors of brain tumours in childhood. Lancet Oncol. 2004;5:399-408.

Murphy AN, Fiskum G, Beal MF. Mitochondria in neurodegeneration: bioenergetic function in cell life and death. J Cereb Blood Flow Metab. 1999;19:231-245.

Nathan PC, Patel SK, Dilley K, Goldsby R, Harvey J, Jacobsen C, et al. Guidelines for identification of, advocacy for, and intervention in neurocognitive problems in survivors of childhood cancer: a report from the Children's Oncology Group. Arch Pediatr Adolesc Med. 2007;161:798-806.

Northington FJ, Ferriero DM, Graham EM, Traystman RJ, Martin LJ. Early neurodegeneration after hypoxia-ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis. Neurobiol Dis. 2001;8:207-219.

Olney JW. Excitotoxicity, apoptosis and neuropsychiatric disorders. Curr Opin Pharmacol. 2003;3:101-109.

Paterson SJ, Heim S, Benasich AA. Development of structure and function in the infant brain: Implications for cognition, language and social behaviour. Neurosci Biobehav Rev. 2006;30:1087-105.

Pepeu G. Mild cognitive impairment: animal models. Dialogues Clin Neurosci. 2004;6:369-377.

Ralhan R, Kaur J. Alkylating agents and cancer therapy. Expert Opin Ther Pat. 2007;17:1061-1075.

Reddick WE, Glass JO, Johnson DP, Laningham FH, Pui CH. Voxel-based analysis of T2 hyperintensities in white matter during treatment of childhood leukemia. Am J Neuroradiol. 2009;30:1947-1954.

Reddy AT, Witek K. Neurologic complications of chemotherapy for children with cancer. Curr Neurol Neurosci Rep. 2003;3:137-142.

Rice D, Barone JS. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspec. 2000;108:511-533.

Robinson KE, Livesay KL, Campbell LK, Scaduto M, Cannistraci CJ, Anderson AW, et al. Working memory in survivors of childhood acute lymphocytic leukemia: functional neuroimaging analyses. Pediatr Blood Cancer. 2010;54:585-590.

Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor-still lethal after eight years. Trends Neurosci. 1995;18:57-58.

Rzeski W, Pruskil S, Macke A, Felderhoff-Mueser U, Reiher AK, Hoerster F, et al. Anticancer agents are potent neurotoxins in vitro and in vivo. Ann Neurol. 2004;56:351-60.

Sapolsky RM. A mechanism for glucocorticoid toxicity in the hippocampus: increased neuronal vulnerability to metabolic insults. J Neurosci. 1985;5:1228-1232.

Shah AJ, Epport K, Azen C, Killen R, Wilson K, De Clerck D, et al. Progressive declines in neurocognitive function among survivors of hematopoietic stem cell transplantation for pediatric hematologic malignancies. J Pediatr Hematol Oncol. 2008;30:411-8.

Seigers R, Fardell JE. Neurobiological basis of chemotherapy-induced cognitive impairment: a review of rodent research. Neurosci Biobehav Rev. 2011;35:729-741.

Sleurs C, Lemiere J, Christiaens D, Billiet T, Peeters R, Sunaert S, et al. Advanced MR diffusion imaging and chemotherapy-related changes in cerebral white matter microstructure of survivors of childhood bone and soft tissue sarcoma? Hum Brain Mapp. 2018;39:3375-3387.

Stemple DL. Structure and function of the notochord: an essential organ for chordate development. Development. 2005;132:2503-2512.

Tallia H. What’s new concerning the chemobrain? Rev Neurol (Paris). 2013;169:216-222.

Tierney AL, Nelson CA. Brain development and the role of experience in the early years. Zero Three. 2009;30:9-13.

Van Dalen EC, Van Der Pal HJ, Kok WE, Caron HN, Kremer LC. Clinical heart failure in a cohort of children treated with anthracyclines: a long-term follow-up study. Eur J Cancer. 2006;42:3191-3198.

Van Gool SW, Van Kerschaver E, Brock P, et al. Disease- and treatment-related elevation of the neurodegenerative marker tau in children with hematological malignancies. Leukemia. 2000;14:2076-2084.

Van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature. 2002;415:1030-1034.

Vardy J, Rourke S, Tannock IF. Evaluation of cognitive function associated with chemotherapy: a review of published studies and recommendations for future research. J Clin Oncol. 2007;25:2455-2463.

Waber DP, Tarbell NJ, Kahn CM, Gelber RD, Sallan SE. The relationship of sex and treatment modality to neuropsychologic outcome in childhood acute lymphoblastic leukemia. J Clin Oncol. 1992;10:810-817.


  • Não há apontamentos.

Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.